
Since chikungunya virus emerged in the Caribbean region 
in late 2013, ≈45 countries have experienced chikungunya 
outbreaks. We described and quantified the spatial and 
temporal events after the introduction and propagation of 
chikungunya into an immunologically naive population from 
the urban north-central region of Venezuela during 2014. 
The epidemic curve (n = 810 cases) unraveled within 5 
months with a basic reproductive number of 3.7 and a radial 
spread traveled distance of 9.4 km at a mean velocity of 
82.9 m/day. The highest disease diffusion speed occurred 
during the first 90 days, and space and space–time model-
ing suggest the epidemic followed a particular geographic 
pathway with spatiotemporal aggregation. The directionality 
and heterogeneity of transmission during the first introduc-
tion of chikungunya indicated existence of areas of diffusion 
and elevated risk for disease and highlight the importance 
of epidemic preparedness. This information will help in 
managing future threats of new or reemerging arboviruses.

Chikungunya, a reemerging mosquitoborne viral in-
fection, is responsible for one of the most explosive 

epidemics in the Western Hemisphere in recent years. 
Since its introduction in the Caribbean region at the end 
of 2013, chikungunya virus (CHIKV) rapidly expanded 
within a year to most countries of South, Central, and 
North America (1,2). CHIKV belongs to the genus Alpha-
virus (Togaviridae), first isolated in Tanzania during 1952 
(3). Its sylvatic (enzootic) cycle in Africa involves nonhu-
man primates; the virus is transmitted by an ample range 
of forest-dwelling Aedes spp. mosquitoes (4). Within the 
urban (human) cycle across Asia, the Indian Ocean, and 
the Americas, CHIKV is transmitted by Aedes aegypti 
and Ae. albopictus mosquitoes (5–7). Most (72%–93%)  

infected persons develop symptomatic disease charac-
terized by fever, rash, and incapacitating arthralgia, pro-
gressing in 42%–60% of patients to chronic, long-lasting 
relapsing or lingering rheumatic disease (8,9). The lack of 
population immunity to CHIKV in the Americas alongside 
the ubiquitous occurrence of competent Ae. aegypti mos-
quitoes and human mobility may explain the rapid expan-
sion of CHIKV across the Americas; cases doubled each 
month during the epidemic exponential phase (10,11). At 
the end of 2014, >1 million suspected and confirmed cas-
es, including severe cases and deaths, were reported in 45 
countries and territories; this figure reached almost 3 mil-
lion cases by mid-2016 (12). The real number of cases is 
most likely higher because of misdiagnosis with dengue 
virus (DENV) infection and underreporting.

In Venezuela, the first official imported chikungunya 
case was reported in June 2014, and local transmission fol-
lowed soon thereafter. Chikungunya quickly spread, caus-
ing a large national epidemic affecting the most populated 
urban areas of northern Venezuela, where DENV trans-
mission is high. Given the paucity of official national data, 
epidemiologic inference was used to estimate the number 
of cases. Although nationally the disease attack rate was 
estimated at 6.9%–13.8% (13), the observed attack rate 
in populated urban areas was ≈40%–50%, comparable to 
those reported in the Dominican Republic (14) and Asia 
and higher than those in La Reunion (15,16).

The rapid expansion and worldwide spread in the last 
decade make CHIKV one of the most public health–rel-
evant arboviruses (17). With the reemergence of other 
arboviruses, new large-scale outbreaks in the near future 
seem likely (18). Clarifying and quantifying the introduc-
tion and propagation range in space and time of the initial 
epidemic wave of chikungunya within the complex urban 
settings of Latin America will shed light on arboviral trans-
mission dynamics and help in managing future threats of 
new or emerging arboviruses operating under similar epi-
demiologic dynamics. We characterized the epidemic wave 
of chikungunya in a region highly affected by the 2014  
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outbreak in Venezuela. To this end, we described the spa-
tial progression of the epidemic using geographic informa-
tion systems (GIS), quantified the global geographic path 
that CHIKV most likely followed during the first 6 months 
of the epidemic by fitting a polynomial regression model 
(trend surface analysis), determined the general direction 
and speed of the propagation wave of the disease, and  
identified the local space–time disease clusters through 
spatial statistics.

Materials and Methods

Study Area
Carabobo State is situated in the north-central region of 
Venezuela (Figure 1). It is one of the most densely popu-
lated regions (19).

Study Design and Data Collection
To determine the spatiotemporal spread of the 2014 chikun-
gunya epidemic at local and global scales, we conducted a 
retrospective study of patient and epidemiologic data col-
lected through the national Notifiable Diseases Surveillance  

System (NDSS). Suspected chikungunya was diagnosed in 
810 persons of all ages by their physicians; these patients 
were reported through the NDSS to the epidemiologic de-
partment of the Regional Ministry of Health of Carabobo 
State. Patients suspected of having chikungunya were 
those with fever of sudden onset, rash, and joint pain with 
or without other influenza-like symptoms. Patients who at-
tended public or private healthcare centers across Carabobo 
State municipalities were included in this study. 

Patient data were obtained for June 10–December 3, 
2014 (epidemiologic weeks 22–49), coinciding with the 
Venezuela chikungunya outbreak. Data corresponding to the 
first visit of the patients to a healthcare center were included 
and comprised patient address, clinical manifestations, and 
epidemiologic risk factors. This information was entered in 
a database, checked for consistency, and analyzed anony-
mously. We defined the index case as the first chikungunya 
patient reported by the NDSS within this region.

Temporal Dynamics of CHIKV Spread
We described the growth rate of the disease by plotting 
the cumulative cases per epidemiologic week and fitted a  
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Figure 1. Area of study on the spatial dynamics of chikungunya virus, Carabobo state, Venezuela, 2014. Blue shading indicates 
2014 population by parish. Most persons live in the capital city of Valencia (892,530 inhabitants); within the metropolitan area, poorer 
settlements are located mainly in the southern area, and the most organized and urbanized medium- and high-level neighborhoods are 
situated toward the north-central part. Insets indicate location of Carabobo state in Venezuela and Venezuela in South America.
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logistic curve after examining the shape of the epidemio-
logic curve (Appendix Figure 1, https://wwwnc.cdc.gov/
EID/article/25/4/17-2121-App1.pdf). We estimated the 
average number of secondary cases resulting from a pri-
mary case in a completely susceptible population— the ep-
idemic’s basic reproductive number (R0)—from the initial 
phase of the epidemic using the exponential growth method 
(20) and then calculated a real-time estimate of R0, called 
Rt (21,22), to explore the time-varying transmissibility of 
chikungunya (Appendix).

Spatiotemporal Trend of the Epidemic  
Wave of Chikungunya
We georeferenced the address of every patient into a GIS so 
that the Xi (east–west) and Yi (north–south) coordinates of 
each chikungunya case were derived. We drew the weekly 
spatial progression of the 810 reported cases with respect 
to the index case in a map. To assess the spreading pat-
tern before the epidemic reached the steady (plateau) state 
(Figure 2), we selected cases that occurred 0–125 days (up 
to epidemiologic week 40) after the index case. Within 
this time range, the case notification rate maintained a sus-
tained growth.

To explore the general spatial trend of chikungunya 
cases (or the movement of the epidemic wave of infection) 
across the study area, we developed a map of time of dis-
ease spread using trend surface analysis, a global surface 
fitting method (Appendix). We created the variable time (in 
days) using the symptom onset date from the index case as 
the baseline date across the 810 case localities; that is, time 
(Xi, Yi). Thus, time is considered the number of days elapsed 
between the appearance of a case in a specific locality Zi and 
the index case. We used results of the trend surface analysis 
to generate a contour map or smoothed surface; each contour 
line represented a specific predicted time period in this ur-
ban landscape setting since the initial invasion of the virus. 
The local rate and direction of the spread of infection was 
estimated as the directional derivative at each case using the 
trend surface analysis fitted model to obtain local vectors that 
depicted the direction and speed (inverse of the slope along 
the direction of the movement) of infection propagation from 
each locality in X and Y directions. In addition, we used krig-
ing, a local geostatistical interpolation method, to generate an 
estimated continuous surface from the scattered set of points 
(i.e., time) with z value to better capture the local spatial vari-
ation of chikungunya spread across the urban landscape (23). 
We used ordinary kriging to predict values of the time period 
since the initial invasion of the virus. We selected the model 
with the best fit out of 3 theoretical variogram models tested 
by cross-validation to predict the values at unmeasured loca-
tions and their associated errors (Appendix).

We also obtained an empirical basic baseline rate 
of disease spread to quantify the observed velocity for 

each case zi directly from the data by measuring the lin-
ear distance (meters) of case Zi to the index case and then  
dividing it by the time in days that elapsed since the index 
case was reported. We assessed differences between ve-
locities by using the Kruskal-Wallis test, a nonparametric 
method to test differences between groups when these are 
nonnormally distributed (24).

Finally, to identify general space–time clusters of chi-
kungunya transmission, we performed a Knox analysis 
(25), and to identify interactions at specific temporal in-
tervals, we used the incremental Knox test (IKT) (26). For 
general space–time clusters we selected critical values of 
100 m (distance) and 3 weeks (time) after multiple distance 
and time windows testing (Appendix Table 2). Our selec-
tion was based on the Aedes mosquito flight range and the 
maximum duration of the intrinsic and extrinsic incubation 
periods of the virus, respectively (27,28). Upon identifica-
tion of the cluster, we calculated the distance between the 
first case of a cluster (C1) and the cases within the cluster 
Zi, considering this distance as a measure of virus disease 
spread. For interactions at specific temporal intervals, we 
used the IKT in an exploratory mode over the time inter-
vals from 1 day to 31 days and space distances from 25 
m to 500 m (Appendix). We conducted spatial analyses 
using R software (The R-Development Core Team, http://
www.r-project.org) and ArcGIS version 10.3 (ESRI Cor-
poration, https://www.esri.com) using the Spatial Analyst 
Toolbox and generated maps with Quantum GIS 2.14.3 Es-
sen (QGIS Development Team GNU—General Public Li-
cense, https://www.qgis.org) software). Space-time (Knox) 
analysis was performed using ClusterSeer 2.0 (Terraseer, 
https://www.biomedware.com/software/clusterseer).

Ethics Statement
Data were analyzed anonymously, and individuals were 
coded along with the information of address with a unique 
numeric identifier. The epidemiologic department of the 
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Figure 2. Reported chikungunya cases during epidemic, 
Carabobo state, Venezuela, 2014. Black line with open black dots 
indicates chikungunya cases; red line with open red diamonds, 
cumulative cases.
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Regional Ministry of Health of Carabobo State approved 
the study.

Results

Temporal Dynamics of CHIKV Spread
A total of 810 suspected chikungunya cases were reported 
in Carabobo State in 2014 during epidemiologic weeks 
22–49 (28 weeks), representing the first introduction and 
propagation of the virus in the north-central region of Ven-
ezuela. The index case was an imported case (in a returning 
traveler from the Dominican Republic) in epidemiologic 
week 22 in the north-central zone of the capital city (Valen-
cia) (Figure 1). The index case was followed by the other 
imported cases and soon after by locally transmitted cases.

The cumulative cases during epidemiologic weeks 
22–49 followed a logistic growth (Appendix Figure 1; 
R = 0.99, n = 810; p<0.05). The reported cases displayed 
a characteristic epidemic curve with a single wave and 
peaked at epidemiologic week 33, eleven weeks after 
the index case (Figure 2). The epidemic takeoff occurred 
at epidemiologic week 31 (i.e., 9 weeks after the index 
case). The total duration of the outbreak was ≈28 weeks; 
however, the main epidemic curve lasted ≈3 months, 
from epidemiologic week 30 until epidemiologic weeks 
43–44. The initial global growth rate of the epidemic 
was 0.53 cases per week, and R0 = 3.7 (95% CI 2.78–
4.99) secondary chikungunya cases per primary case 
(epidemiologic weeks 22–31). We obtained comparable 
results when we calculated the instantaneous reproductive 
number (Rt = 4.5, 95% CI 2.4–7.1) during the epidemic 

peak. Beginning with epidemiologic week 34, Rt values 
fell below 1, and they gradually decreased from there 
onward (Appendix Figure 2).

Spatiotemporal Distribution of the  
Chikungunya Epidemic
The chikungunya outbreak progressed chronologically 
and spatially through Carabobo State (Figure 3; Video, 
https://wwwnc.cdc.gov/EID/article/25/4/17-2121-V1.
htm). The cases reported in Valencia during the first 6 
weeks were located in the central area of the city close to 
the index case, whereas a few cases were reported in the 
southwestern part of Valencia and in other small urban 
towns of Carabobo (Figure 3, panel A). The first autoch-
thonous case occurred during this interval in the south-
central area of Valencia, relatively close to the index case 
(Figure 3, panel A). During epidemiologic weeks 28–31, 
the number of reported cases increased in parishes around 
the autochthonous case (Figure 3, panel B). During epide-
miologic weeks 32–35, the number of cases exploded ex-
ponentially, and the disease spread rapidly throughout the 
capital city and surrounding smaller urban centers (Figure 
3, panel C). New cases were actively reported during 8 
continuous weeks (Figure 3, panels C, D) to later decrease 
from epidemiologic week 40 to epidemiologic week 49 
(Figure 3, panels E, F). The epidemic progressed in 2 
directions (movement axes) in the region: a north–south 
direction and a northeastern and southwestern direction. 
Both shifts consistently overlapped with the populated 
centers of the region and the main traffic routes (motor-
ways and main roads).
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Figure 3. Spatial and temporal spread of chikungunya epidemic, Carabobo state, Venezuela, June–December 2014. Time is presented 
at epidemiologic week intervals as follows: A) weeks 22–27; B) weeks 28–31; C) weeks 32–35; D) weeks 36–39; E) weeks 40–45; 
F) weeks 46–49. Red circles indicate the appearance of new cases for the given interval; blue indicates the cumulative cases in prior 
intervals. Light yellow lines depict the road system of the area of study; light gray areas represent the populated areas (urban centers) 
within the parishes. Yellow star indicates index case; green diamond indicates first autochthonous case.
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Figure 4, panel A, depicts the general direction and 
propagating wave of disease derived from the trend surface 
analysis. Contour lines that are far apart indicate that the 
epidemic diffused quickly through the area, whereas lines 
that are closer together show a slower progression. The di-
rection of diffusion is also given by the edges of the contour 
lines. The model located the wave of disease dispersal in 
the central part of the region and included the index case 
and autochthonous case. The bulk of the outbreak unfold-
ed within 90 days, spreading mainly to the southwestern 
and northern parts of the capital city. During this time, the 
maximum radial distance traveled was 9.4 km. A slower 
diffusion was predicted toward the northeast and southern 

part of the region. However, the limitation of the method 
resulting from edge effects determines that the best area for 
prediction is the central one.

To visualize the local diffusion of CHIKV at each 
location, we drew the vector field across the modeled surface  
(Figure 4, panel A). Overall, the model confirms the pre-
vious observation of a general trend or corridor of diffu-
sion of chikungunya cases southwest and northeast of the 
capital city within the first 80 days. After 90 days, the 
epidemic wave varied its direction and magnitude by loca-
tion. Although agreeing with the general pattern shown by 
the trend surface analysis, the resulting kriging Gaussian 
(selected) model interpolation surface (Figure 4, panel B;  
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Figure 4. Global and local 
predicted spreading patterns of 
chikungunya virus, Carabobo 
state, Venezuela, 2014. A) 
Contour map (global scale) of 
the predicted spreading waves 
and the velocity vector arrows of 
each case of chikungunya. The 
contour map and contour lines 
in black (traveling waves) were 
estimated by the best-fit trend 
surface analysis (third order 
polynomial model) of time (days) 
to the first reported case or index 
case of chikungunya across the 
landscape. White lines correspond 
to the road system of the area. 
The background gradient of 
color shows the probability of 
chikungunya virus diffusion 
according to the prediction of the 
model: the darker the red, the 
higher the probability of spread. 
Each vector (blue outlined arrows) 
represents the instantaneous 
velocity derived from the partial, 
differential equations from the 
trend surface analysis model 
(Appendix, https://wwwnc.cdc.gov/
eid/article/25/4/17-2121-App1.
pdf). B) Spatial prediction map 
for the ordinary kriging (Gaussian 
model) interpolation of the time 
(each color represents a different 
number of days) of chikungunya 
spread. Contour lines from trend 
surface analysis depicted in 
the kriging surface are shown 
only for comparison purposes. 
Yellow star indicates index case; 
green diamond indicates first 
autochthonous case.
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Appendix Table 1) predicts a more heterogeneous spread 
pattern of chikungunya cases by matching the patchy (un-
even population density) distribution of human neighbor-
hoods and the road network. In addition, kriging identi-
fied a faster propagation of the epidemiologic wave at the 
southwestern and eastern areas where the model showed its 
best fit (Appendix Figure 3, panel A) and a slower move-
ment to the northeastern and south-central areas than esti-
mated by the trend surface analysis.

We calculated the virus diffusion velocities for each par-
ish through the empirical method (Table). The mean velocity 
of disease spread across the state was 82.9 m ± 53.6 m/day, 
and overall, the pattern of diffusion of CHIKV was highest in 
the suburban and rural settlements near the capital city. How-
ever, the observed velocities varied significantly by location 
(n = 735; p<0.05). For instance, the parishes at the center of 
the capital (San Jose, Catedral, Candelaria, San Blas, Santa 
Rosa) showed velocities <60 m/day, whereas in the remain-
ing localities, including both rural and suburban towns, the 
speed was >60 m/day. The maximum velocity of the out-
break was 483 m/day, measured south of the capital.

Spatiotemporal Clusters of the Epidemic Wave
Results after multiple space and time parameters testing 
showed that core clusters remained similar through time 
(Appendix Figure 4), and the relative risk (RR) within the 
clusters remained important (RR >1.5) up to 3 weeks (Ap-
pendix Figure 5). Using selected critical values, we iden-
tified 75 general space–time clusters using Knox analysis 
(Appendix Table 3; Appendix Figure 6, panel A). These 
clusters included at least 2 space–time-linked cases and a 
total of 205 (27.9%) cases that showed a space–time rela-
tion. The major accumulation of clusters occurred in the 

southern and southwestern parts of the capital. The earliest 
cluster (cluster 7; Figure 5) was located in the west-central 
parts of the capital and comprised 3 cases, including the 
index case. From this cluster, the average distance from 
each case to the index case was 32 m, and the cases were  
reported within 25 days after the index case. In addition, the 
major cluster (cluster 57, 12 cases) was located in the west-
central area of the capital 4 km from the index case (Figure 
5). The cases belonging to this cluster occurred within 9 
days (1.3 cases per day); these cases occurred an average of 
70 days (range 69–77 days) after the index case (Appendix 
Table 3). The median time between the first notified case 
(symptom onset) and the last case within a cluster was 9 
days (range 3–18 days). Furthermore, the average distance 
between cases within the clusters was 75.2 m ± 25.6 m 
(range 110.6–39.2 m) (Appendix Table 4). Furthermore, 
the baseline velocity in Carabobo State was similar to the 
average velocity within the clusters (69.9 ± 34.4 m/day). 
These results agree with IKT findings, where the temporal 
intervals with the strongest spatial clustering and RR 
occurred at 1–7 days and 25–150 m (Appendix Figures 7, 8).

Discussion
We described and quantified the spatial and temporal events 
that followed the introduction and explosive propagation of 
CHIKV into an immunologically naive population living in 
the urban north-central region of Venezuela during 2014. 
The main epidemic curve developed within 5 months, 
with a maximum value of the estimate of R0 = 3.7 by 
epidemiologic week 12. The speed of disease diffusion 
was greatest during the first 90 days, and the spatial spread 
was heterogeneous following mostly a southwest spatial 
corridor at a variable local rate of diffusion across the 
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Table. Average velocities of chikungunya virus spread across Carabobo state, Venezuela, 2014 

Civil parish No. cases 
Velocity, m/day 

Mean (95% CI) SD Minimum Maximum Location* 

Candelaria 29 39.4 (33.5–45.2) 15.3 17 96 Central 
Catedral 11 28.8 (22.4–35.3) 9.5 15 50 Central 
Ciudad Alianza 1 146.7 Not applicable 147 147 East-southeast 
El Socorro 6 47.2 (13.5–80.9) 32.1 25 98 South-southwest 
Guacara† 4 206.2 (35.1 to 447.6) 151.7 98 430 East-northeast 
Guigue‡ 5 256.7 (151.7–361.8) 84.6 163 344 Southeast 
Independencia† 6 206.7 (138.8–274.5) 64.7 138 310 South-southwest 
Los Guayos 42 115.1 (105.3–124.9) 31.4 52 176 East-southeast 
Miguel Peña 228 80.6 (75.3–86.0) 40.6 21 483 South 
Naguanagua 41 85.9 (77.3–94.6) 27.3 47 174 North 
Rafael Urdaneta 84 87.2 (79.5–94.8) 35.3 23 186 Southeast 
San Blas 27 43.6 (39.0–48.3) 11.7 21 62 Central 
San Diego 35 73.3 (63.5–83.1) 28.5 41 150 North-northeast 
San Jose 68 27.6 (21.3–34.0) 26.2 0 202 North-central 
Santa Rosa 70 58.4 (55.9–60.9) 10.4 35 97 Central 
Tacarigua‡ 6 197.0 (147.7–246.3) 47.0 149 259 South-southeast 
Tocuyito† 70 149.8 (137.2–162.4) 52.8 61 365 Southwest 
Yagua‡ 2 111.0 (3.4 to 225.4) 12.7 102 120 East-northeast 
Total 735 82.9 (79.0–86.7) 53.6 0 483 Entire state 
*Location refers to relative locations from the center of the capital city, Valencia. 
†Suburban settlements. 
‡Rural settlements. 
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landscape. The radial spread traveled distance was 9.4 km at 
a mean velocity of 82.9 m/day. The chikungunya epidemic 
showed spatiotemporal aggregation predominantly south 
of the capital city, where conditions for human–vector  
contact are favorable.

The temporal dynamics here described, R0 and its 
time variable form Rt, suggest high transmissibility of 
CHIKV in this population. These results agree with previ-
ous CHIKV introductions into naive populations (29–31) 
and with the 2014 predicted values for the mid-latitude 
countries (R0 = 4–7) of the Americas (31). High values 
of R0 are also described during first introduction out-
breaks of other Aedes mosquito–borne pathogens, such as 
DENV in Chile (R0 = 27.2) (32) and Zika virus in Brazil 
(R0 = 1.5–6) (33) and French Polynesia (34). Yet, over-
all R0 estimates for dengue are ≈2–6 (35). The similarity 
between the R0 of CHIKV, DENV, and Zika virus infec-
tions, all transmitted by the same main vector, the Ae. 
aegypti mosquito, strongly suggests that the major factor 
driving the exponential increase of the epidemic curve of 
arboviruses in naive populations is the transmission ef-
ficiency of the vector.

Spatially, trend surface and kriging analyses showed 
a primary wave of disease spread within the first 80 days 
in the most likely area of transmission (the southwestern 
center of Valencia), whereas a second wave at 90 days 
showed the spread of cases toward the southern, western, 
and northern areas. This sequential pattern is similar to 
that of dengue, where transmission within neighborhoods 
most likely is driven by mosquito presence or abundance 

and/or short-distance movement of viremic hosts (36–38), 
whereas long-distance dissemination is probably generated 
by human mobility patterns through main roads and motor-
ways. Both movements powerfully affected disease trans-
mission (39,40). Moreover, population density modulates 
the chance of vector–host contact (30,41), a fact reflected in 
the variation of calculated velocities across different spatial 
points and the increased diffusion speed of the epidemic 
toward the southernmost populated area.

Although CHIKV was introduced into a naive pop-
ulation in Venezuela, the distribution of cases was not 
random but aggregated into 75 significant space–time 
clusters, indicating an increased likelihood of vector–host 
contact. The area with most clusters, the southern part 
of Valencia city, is characterized by densely populated 
neighborhoods, lower socioeconomic status, and crowded 
living conditions. Similar factors increased the risk for 
dengue transmission and clustering (hot spots) in highly 
endemic urban areas of Venezuela (42). Poverty and hu-
man behavior fostering potential mosquito breeding sites 
(such as storing water at home) were linked with a greater 
risk for dengue (42,43). In Venezuela, long-lasting defi-
cits in public services, such as frequent and prolonged in-
terruptions in water supply and electricity, have become 
regular in recent years. These inadequacies have obliged 
residents to store water, maintaining adequate breeding 
conditions for Aedes vectors during the dry season and 
throughout the year (44). During the CHIKV epidemic, 
the proportion of houses infested with Aedes larvae/pupae 
(house index) in Venezuela was >20% (45). The World 
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Figure 5. Geographic 
distribution and significant 
space–time clustering of 
reported chikungunya cases 
identified in a section of 
the capital city, Valencia 
(metropolitan area), Carabobo 
state, Venezuela, June–
December 2014. Red dots 
denote case location; black 
outlined circles identify 
a significant space–time 
cluster; yellow lines show the 
interaction between cases 
(time–space link). The analysis 
was performed using 100 m as 
clustering distance and 3 weeks 
as time window. Significance 
level for local clustering 
detection was p<0.05. Inset 
depicts the geographic location 
of Carabobo; black rectangle 
indicates highlighted study area.
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Health Organization recommends a house index <5% for 
adequate vector control (46).

In our study, the average distance among cases 
within chikungunya clusters was 75 m, which coincid-
ed with the reported flying range of urban Ae. aegypti  
females during mark-release-recapture studies (37,47). 
Ae. aegypti females have been reported to visit a maxi-
mum of 3 houses in a lifetime while not traveling far 
from their breeding sites (48,49). Thus, the distance 
traveled by the vector and the number of possible host 
encounters with an infected vector cannot explain the 
entire disease epidemic spread. Other factors, such as 
movement of viremic hosts, a widely distributed vector, 
and the lack of herd immunity, may play a role, as for 
DENV, in long-range spread (37).

The lack of entomologic data and estimates of human 
movement limit our study. We expect that our estimates 
based on epidemiologic records are accurate because chi-
kungunya is symptomatic in >80% of cases. Likewise, 
surveillance in Venezuela is based on symptomatic patient 
reporting by treating doctors.

Our analysis suggests that the epidemic of chikungun-
ya in Venezuela followed a determined geographic course. 
This propagation was potentiated south and southwest of 
the study area. Chikungunya is now established in Ven-
ezuela, along with other Aedes mosquito–borne infections, 
such as dengue and Zika. However, further epidemics of 
these and other reemergent arboviruses (i.e., Mayaro virus 
[18,50]) are likely to arise. The insights gained in our study 
will help identify and predict future epidemic waves of up-
coming vectorborne infections and quickly define interven-
tion areas and improve outbreak preparedness response in 
Venezuela and countries with similar settings.
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Appendix 

1. Materials and Methods 

1.1. Estimating the Reproductive Number (R0) 

For new emerging infectious diseases, the value of the reproductive number R0 can be 

inferred indirectly from the initial epidemic phase by estimating the exponential epidemic growth 

rate (r) of new observed infections and relating these parameters to the generation time of 

infection (Tg) through the following equation (1). 

R =
1

𝑀(−𝑟)
 

where M is the moment generating function of the disease generation time distribution. A 

generation time distribution for chikungunya (CHIK) was defined using a gamma distribution 

with a mean of 1.86 weeks and a standard deviation of 0.05 weeks. This includes both the human 

and vector infection cycle, by assuming a short mosquito infection lifespan case as reported 

before by Boëlle et al. (2). For this method we applied the ‘R0’ package version 1.2–6 developed 

by Boëlle and Obadia (3) (The R-Development Core Team, http://www.r-project.org). 

1.2. Estimating the Effective Reproductive Number (Rt) 

Given that the behavior of the force of chikungunya virus (CHIKV) infection through 

time was unknown, we calculated a real-time estimate of the basic reproductive number of the 

disease, that is the effective reproductive number at time t (Rt) as originally proposed by 

Nishiura et al. (4). We then explored the time-varying transmissibility using the Rt series derived 

following the methodology of Coelho and Carvalho (5). Hence, Rt was estimated as 

Rt = (
Yt+1

Yt
)

1/𝑛
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where Yt and Yt+1 are taken to be the number of reported disease cases for a particular 

time t and t+1, respectively, while n defines the ratio between the length of the reporting interval 

and the mean generation time of the disease. The reporting interval was defined as the duration 

of an epidemiologic week (7 days), while the generation time was assumed to be of 2 weeks as 

established above. To run the calculation, we applied the R code developed by Coelho and 

Carvalho (5) available on the GitHub repository at https://github.com/fccoelho/paperLM1 (The 

R-Development Core Team). 

1.3. Trend Surface Analysis (TSA) and Local Vectors of Direction and Speed of Infection 

TSA methodology consists in fitting, through the method of least squares, a function in a 

multiple-regression–like procedure where the response variable, in this case, time, is expressed 

as a polynomial function of geographic coordinates (Xi, Yi) of individual case-points i. e., time = f 

(X, Y), a model known as a polynomial regression (6). The order of the polynomial chosen as the 

best fit-model or the best polynomial equation will determine the shape of the curve or surface. 

Here, we used a third-order polynomial. The variable time (in days) was created using the 

symptoms onset date from the index case (IC) as the baseline date across the 810 case localities, 

this is, time (Xi, Yi). Thus, time is considered as the number of days elapsed between the 

appearance of a case in a specific locality Zi and the IC. Results of the TSA were used to 

generate a contour map or smoothed surface, with each contour line representing a specific 

predicted time-period in this urban landscape setting since the initial invasion of the virus. 

Finally, we proceeded to estimate the local rate and direction of the spread of infection as the 

directional derivative at each case using the TSA fitted model to obtain local vectors that 

depicted the direction and speed (inverse of the slope along the direction of the movement) of 

infection propagation from each locality in X and Y directions. To this end, we calculated partial 

differential equations of time with respect to the X- and Y-coordinates (TIME/X and 

TIME/Y) to obtain local vectors that depicted the direction and speed (inverse of the slope 

along the direction of the movement) of infection propagation from each locality in X and Y 

direction. The resultant vector for each case will represent, in turn, the overall velocity (in 

m/day) and direction of disease spread in each point. The set of vectors were assembled in a 

vector field and overlapped over the fitted surface to visualize the pattern of local spread of the 

virus along the urban landscape. TSA has been previously used to study pathogen dispersal 

processes in space and time (7). Further details of this methodology can be found in Moore (8) 
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and Adjemian et al. (9). All the analyses were carried out in R software (The R-Development 

Core Team). Maps of time contours and vectors were generated in the ArcGIS software (v.10.3, 

ESRI Corporation, Redlands, CA), while general maps were constructed using Quantum GIS 

2.14.3 Essen (GNU—General Public License). 

1.4. Kriging Interpolation 

Kriging is a local interpolation method based on a set of linear regressions that determine 

the best combination of weights to interpolate the data points by minimizing the variance as 

derived from the spatial covariance in the data (10). The weights are based on the spatial 

parameters of a theoretical variogram model such that sampling locations within the spatial range 

(close distances) of influence has more weight on the predicted value than the distant locations. 

Although kriging and trend surface analysis share some features (i.e., to describe the general 

spatial trend), the local interpolation performed by kriging shows an enhanced picture of the 

local spatial pattern given that the kriged values are very close to the observed ones. Kriging 

analyses (and resulting surface maps) were carried out in the Geostatistics tool from the ArcGIS 

software (v.10.3, ESRI Corporation). 

1.5. Spatiotemporal Analysis 

Even though CHIKV was introduced into a naïve population, i.e., the individuals had a 

similar immunological likelihood of becoming infected, we wanted to assess the hypothesis of 

heterogeneity during disease transmission. In this sense we aimed to find whether aggregation of 

cases was present during the CHIK epidemic and if the likelihood of being infected could have 

varied depending on space and time distances. Thus, to identify general space-time aggregation 

(clusters) of CHIK transmission during the whole epidemic (28 weeks) we performed the Knox 

analysis (11) and the incremental Knox test (IKT) proposed by Aldstadt in 2007 (12) to identify 

linked transmission events. 

1.5.1. Knox Test 

This method measures potential space–time interactions by analyzing pairs of cases that 

belong to a particular space (distance) and time (days) window. This intuitive method provided 

simplicity and promptness (13). Yet, the Knox test requires prior selection of a “critical” time 

and distance to classify whether the pairs are close in space, or in time, or both. The test statistic, 

X, is the number of pairs of cases that are close in both space and time, and its calculated as 
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𝑋(𝑠, 𝑡) =  ∑ ∑ 𝑎𝑖𝑗
𝑠

𝑖=1

𝑗=1

𝑁

𝑖=1

𝑎𝑖𝑗
𝑡  

where s and t being the selected spatial and temporal distances, N is the number of cases, 

and the pair of cases are represented by i and j. The exact p value is obtained by the Monte Carlo 

procedure. 

To select the “critical” value of space and time for our analysis, we performed a series of 

repetitions of the Knox method varying the time windows from 1 to 4 weeks (30 days in total) 

and the space window ranging from 25 to 200 m. Such analyses were made using the software 

ClusterSeer 2.0 (Terraseer, Ann Arbor, MI), which provides the graphical output of the space–

time interactions (10.000 Monte Carlo iterations). The relative risk (RR) of each space and time 

window was calculated according to Tran et al. (14); where the RR is considered to be the ratio 

between the observed number of pairs of cases found at the space-distance s (in meters) and the 

time-distance t (in weeks) and the number of expected pairs of cases found at these same 

distances. 

1.5.2. Incremental Knox Test 

The incremental Knox test (IKT) is similar to other tests of the general hypothesis of 

space–time dependence (cases close to one another are much more likely to interact than cases 

far apart). However, this technique tests the interaction at specific time intervals rather than the 

more general space–time interaction hypothesis. The IKT examines consecutive links in the 

chain of transmission by identifying significant clusters in determined space and time intervals. 

The test assumes that cases that are nearer together than would be expected in the absence of an 

infectious process belong to one similar linked event of transmission (12). 

Therefore, the IKT was used to understand in which time interval the clusters of cases of 

CHIK belonging to the same chain of transmission occurred helping to understand the linked 

transmission processes occurring in certain temporal span. The interval Knox statistic is 

formulated as 

𝐼𝐾(𝑠, 𝑡) =  ∑ ∑ 𝑎𝑖𝑗
𝑠

𝑖=1

𝑗=1

𝑁

𝑖=1

𝑏𝑖𝑗
𝑡  
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Were s and t are the selected spatial and temporal distances, N is the number of cases, and 

the pair of cases are represented by i and j. When the cases i and j are time interval (t) apart  

𝑏𝑖𝑗
𝑡 = 1. The Monte Carlo procedure with 10.000 iterations was used to construct reference 

distribution for IK (Z values) and the test results are also reported as the epidemiologic notion of 

excess of risk (details of this methodology can be found in [12]). over the time intervals from 1 

to 31 days, and space distances from 25 to 500 m (selected distances in metes: 25, 50, 75, 100, 

125, 150, 175, 200, 300, 400, 500). 

2. Results 

From surveillance data collected during the months following the introduction of 

CHIKV, the dynamics and timing of the 810 chikungunya reported cases were studied. Appendix 

Figure 1 depicts the distribution of cases and cumulative cases along the 28 weeks of the 

chikungunya epidemic. Since the detection of the index case (IC) in June of 2014, the north-

central region of Venezuela experienced a continuous reporting of chikungunya cases. During 

the first 9 weeks (epidemiologic week [EW] 21-EW 29), a low number of cases were reported. 

After EW 30 cases increased rapidly with the exponential growth of the epidemic being observed 

between EW 30 and EW 33. The cumulative cases during the EW 22–49 followed a logistic 

growth (Appendix Figure 1: R = 0.99, n = 810, p < 0.05) reaching the plateau at EW 44 (787 

cases). The total growth rate estimated from the logistic fitted curve was 0.53 cases per EW. 

2.1. Reproductive Number (R0) and Effective Reproductive Number (Rt) 

To better understand the CHIK transmission dynamic, the basic reproductive number (R0) 

was calculated during the exponential growth of the epidemic, that is during (EW 21–EW 33). 

During these first 12 weeks, the maximum value of R0 reached was equal to 3.7 secondary 

chikungunya cases per primary case. Furthermore, we estimated the effective reproductive 

number (Rt) with a reporting interval of 1 week, to assess changes of R0 through time. The curve 

of Rt values fluctuates in time as shown in Appendix Figure 2, where the maximum value of Rt 

obtained was 4.7 (95% CI 2.4–7.1) occurring during the EW 31 (Appendix Figure 2). Both 

measures are similar in principle, and estimate the transmission dynamic of the disease whether 

is at the initial phase of the epidemic (R0) or as an estimate for the whole epidemic (Rt). The 

usefulness of Rt is the possibility to estimate its uncertainty (confidence interval) throughout the 

epidemic curve. This could be relevant and applicable to other diseases as well. Due to the 
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intrinsic variability of the Rt series, the examination of its credible intervals is essential to 

identify periods of sustained transmission (5). 

2.2. Kriging Interpolation 

We performed an ordinary kriging using 3 anisotropic variogram models. The models 

were compared by cross-validation and evaluated in terms of their overall robustness: optimality 

and validity of the model to fit the observed data (Appendix Table 1, Appendix Figure 3). 

Overall, all the models underestimated the variability in their predictions as is shown by: i) 

negative values of the mean standardized errors (MSE), ii) average standard error (ASE) values 

lower than the root-mean-squared prediction error (RMSE) values, and iii) standardized root-

mean-squared prediction error (RMSSE) values >1 (Appendix Table 1). This can be due to too 

few sampled locations within the spatial range of the study area. However, our best selected 

model (Gaussian) was the one that had the MSE nearest to 0, the smallest RMSE, the ASE 

nearest to the RMSE, and a RMSSE nearest to 1 (15). 

The model was adjusted for the directional spatial trend of our data (anisotropy) in the 

semivariogram (10). Maps showing the kriging standard errors of the Gaussian model and of the 

other 2 models (for comparison) are presented in Appendix Figure 3. Darker colors in the error 

map (Appendix Figure 3) show larger kriging standard errors. Overall, the model failed to 

predict in areas out of the main spatial range of the data (where there are fewer and scarcer case 

locations) and showed a better prediction toward the south-west and eastern zones of the study 

area where a larger number of locations are presented. Indeed, this analysis identified a faster 

propagation of the epidemiologic wave at the south-west and eastern areas where the model 

showed its better fit (Appendix Figure 3, panel a), and a slower movement to the north-east and 

south-center areas. 

2.3. Knox Test 

The results obtained after the analysis with different critical values of s and t showed that 

the core clusters (main clusters) found at week 1 (25–200 m) are the same than those (core 

clusters) found at week 2, 3, and 4 (25–200 m), therefore, we have selected to show on Appendix 

Figure 4 the graphical output of the critical values of t with a fixed space window of 100 m. 

However, the size of the core clusters is susceptible to the change of the space and time 
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windows, making the clusters bigger or smaller in terms of number of links (Appendix Table 1), 

i.e., from 164 space-time links (1W,100 m) to 220 space-time links (3W,100 m). 

Regarding the RR at different space and time windows (Appendix Table 1), the highest 

RR were found at the space–time window of 1 week and 25–200 m (RR = between 3 and 2), but 

also showing RR >1.5 up to week 3 at the same space windows, while from week 4, values 

showed RR <1.5 (Appendix Figure 5). These results provided useful information that allowed to 

observe the extent of the interaction of s and t values that shows the highest RR. Hence, RR 

values that show an important strength of association are present up to week 3 (21 days) within a 

distance that varies between 25 and 150 m. This agrees with previous results obtained by 

Vincenti-Gonzalez et al. (16) for Venezuela, where the significant hot spots of high dengue 

seroprevalence values were found between 25–100 m, suggesting a focal transmission. 

Even though the RR in week 3 decreased along the different distances (average 32 ± 7%) 

when compared to the RR of week 1, the RR remained higher than one (RR>1) in week 3. Given 

the fact that the Knox test results showed the same core clusters along the different t windows 

and the RR remained epidemiologically relevant after 3 weeks (general clustering of symptoms 

onset date, and RR>1), we used the window of 3 weeks with a distance window of 100 m to 

show the global clusters of transmission (Appendix Figure 6). We decided to choose these 

distance and time variables based on biologic and ecologic knowledge as explained in the 

manuscript and in agreement with other authors (17,18). Where 100 m is the distance referred by 

most as the average flight range radius of Aedes spp. and a time window of 3 weeks gives 

enough time span for most transmission events to occur (19–21). 

2.3.1. General Clusters of Transmission Events During the Epidemic Wave of Chikungunya 

Our results (Appendix Table 3) show that the average cluster duration since the 

symptoms onset of the first case to the symptoms onset of the last case within the clusters is 12.5 

days ranging from 1–67 days. The choosing of 100 m does not preclude the finding of larger 

distances between cases within a cluster as the range of distances found was between 8–216 m. 

We expect that within clusters >1 chain of transmission will occur each with a duration of ~1 

week or less. 
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2.4. Incremental Knox Test 

The IKT was the second method used to assess the uncertainty of the cluster analysis. 

The previous was made employing an exploratory mode where the p-values (Appendix Figure 7) 

and the RR (Appendix Figure 8) were examined for a range of values of s and t. The results of 

the IKT analysis proved to be useful to identify linked transmission events, and showed that the 

temporal intervals with the strongest spatial clustering (belonging to the same chain of 

transmission) and RR occurs between 1–7 days suggesting multiple vector feeding within a 

gonotrophic cycle (22), with less strong clustering around 12–14 days. High RR results within 1 

week are consistent for all tested distances, but values of RR >5 were found to be in distances 

between 25 and 150 m (Appendix Figures 7, 8), favoring our previous selection of a space-time 

window of 100 m. 
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Appendix Table 1. Model parameters of Kriging interpolation* 

Model Nugget (Co) Range (a) Partial Sill (C1) MSE RMSE ASE RMSSE 
Gaussian 8.88 

    
 

30.89 0.014 17.35 14.29 1.18  
188.42 

    

Spherical 0.05 
    

 
48.84 0.015 17.45 11.04 1.53  
117.51 

    

Exponential 2.06 
    

 
984.85 0.016 18.13 15.07 1.40  
388.71 

    

*ASE, average standard error; MSE, mean standardized error; RMSE, root-mean-square error; RMSSE, root-mean-square standardized error. 
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Appendix Table 2. Knox test with alternative definitions of spatial and temporal proximity* 

Time, wk Distance, m Expected Observed RR 
1 25 22 72 3.27  

50 28 81 2.86  
75 45 117 2.57  

100 72 164 2.27  
125 97 213 2.20  
150 122 258 2.11  
175 159 316 1.99  
200 199 376 1.89 

2 25 34 77 2.28  
50 44 95 2.18  
75 70 138 1.98  

100 110 202 1.83  
125 148 264 1.78  
150 187 322 1.72  
175 243 404 1.66  
200 304 497 1.63 

3 25 43 79 1.85  
50 55 97 1.76  
75 88 144 1.63  

100 140 220 1.57  
125 188 293 1.56  
150 237 360 1.52  
175 308 457 1.48  
200 386 566 1.47 

4 25 50 80 1.59  
50 65 99 1.53  
75 104 150 1.45  

100 164 236 1.44  
125 221 313 1.42  
150 279 383 1.37  
175 362 493 1.36 

 200 453 617 1.36 
*Monte Carlo simulations performed in each analysis:10.000. 

 

 
Appendix Table 3. Description of the space–time cluster identified for the chikungunya epidemic in the north-central region of 
Venezuela* 

Cluster ID 
No. 

cases 
Day occurrence, 

first–last case 
Cluster 

duration, d 
Average distance 

from IC, m 
Range of distance 

from IC, m 
Velocity average, 

m/day 
Velocity range, 

m/day 

1 2 95–105 11 10132.0 10128–10136 102.0 97–107 
2 4 77–105 29 7659.8 7636–7686 86.8 73–100 
3 4 72–85 14 2556.0 2818–2613 32.3 30–36 
4 3 72–94 23 2872.0 2857–2898 33.7 30–40 
5 2 121–126 6 6685.5 6661–6710 54.0 53–55 
7 3 0–25 26 31.7 0–95 1.3 0–4 
8 2 125–135 11 2598.5 2598–2599 20.0 19–21 
9 3 64–95 78 2553.7 2515–2585 33.3 27–34 
10 5 71–99 29 2344.0 2299–2429 29.6 24–33 
11 2 73–73 1 1857.0 1856–1858 25.0 25.0 
12 2 61–61 1 3673.5 3673–3674 60.0 60.0 
13 2 73–80 8 2550.0 2506–2594 33.4 32–34 
14 4 79–107 29 2680.3 2647–2714 29.0 25–34 
15 5 72–108 37 3463.0 3418–3508 43.4 32–51 
16 3 43–57 15 3687.0 3680–3700 75.3 65–86 
17 3 3–31 33 3015.3 3011–3020 45.3 39–50 
18 2 91–99 9 3354.5 3315–3394 35.0 33–37 
19 2 47–60 14 3305.0 3304–3306 62.5 55–70 
20 3 63–78 16 3198.3 3192–3205 46.0 41–51 
21 2 61–82 22 3531.5 3491–3571 50.5 44–57 
23 2 66–66 1 3573.0 3571–3575 54.0 54.0 
24 2 65–65 1 3684.0 3683–3685 57.0 57.0 
25 9 59–72 14 3786.2 3734–3882 57.8 54–64 
26 3 75–88 14 3967.0 3957–3967 53.0 45–53 
27 12 69–77 9 4092.8 4008–4241 57.8 54–59 
28 2 66–68 3 5608.5 5643–5574 83.5 83–84 
29 3 0–66 67 6799.0 6194–6204 97.0 94–103 
30 2 67–68 2 3617.0 3616–3618 53.5 53–54 
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Cluster ID 
No. 

cases 
Day occurrence, 

first–last case 
Cluster 

duration, d 
Average distance 

from IC, m 
Range of distance 

from IC, m 
Velocity average, 

m/day 
Velocity range, 

m/day 
31 2 74–80 7 3970.0 3929–3997 51.5 49–54 
32 2 16–19 4 3822.0 3820–3824 220.0 201–239 
33 5 65–82 18 4311.7 4282–4344 59.8 53–66 
34 2 67–72 6 4483.0 4471–4495 64.5 62–67 
35 2 88–94 7 5555.0 5554–5556 61.0 59–63 
36 3 89–109 21 6709.7 6694–6739 67.7 61–76 
37 2 72–76 5 4601.0 4571–4631 62.0 61–63 
38 3 86–88 3 4760.3 4752–4775 54.3 54–55 
39 3 68–86 19 4940.3 4894–4998 62.3 57–72 
40 2 76–76 1 4645.5 4623–4668 61.0 61.0 
41 2 61–64 4 4938.0 4938–4964 77.0 77–81 
42 2 50–63 14 5138.0 5138.0 103.0 82–103 
44 2 103–107 5 5561.5 5518–5605 53.0 52–54 
45 2 116–117 2 5564.5 5562–5567 48.0 48.0 
46 2 119–121 3 5596.0 5536–5556 47.0 47.0 
47 2 108–115 8 5750.5 5727–5774 51.5 50–53 
48 2 92–101 10 6126.5 6126–6127 64.0 61–67 
49 2 80–80 1 6356.0 6349–6363 79.5 79–80 
50 2 76–76 1 6368.5 6368–6369 84.0 84.0 
51 3 103–132 30 6501.6 6512–6479 56.0 49–63 
52 2 85–85 1 6796.5 6191–6202 73.0 73.0 
53 2 75–111 37 6382.5 6373–6392 71.0 57–85 
54 2 99–103 5 7305.5 7279–7332 72.5 71–74 
55 2 92–103 12 7734.5 7704–7765 79.5 84–75 
56 2 60–74 15 7046.0 7011–7081 106.5 96–117 
57 6 60–77 18 7341.8 7262–7428 108.3 96–122 
58 2 81–83 3 7526.5 7495–7558 92.0 91–93 
59 3 63–72 10 7598.6 7535–7661 112.3 106–120 
60 2 76–76 1 8228.5 8221–8626 108.0 86–97 
61 2 72–76 5 8396.0 8381–8411 113.5 111–116 
62 2 89–100 12 8647.5 8626–8669 91.5 86–97 
63 2 86–86 1 8778.5 8774–8783 102.0 102.0 
64 2 102–115 14 9355.0 9349–9361 86.5 81–92 
65 2 76–76 1 8228.5 8221–8236 108.0 108.0 
66 2 75–80 6 8406.0 8359–8453 108.5 106–111 
67 2 80–80 1 8804.0 8783–8825 110.0 110.0 
68 2 79–79 1 10419.5 10397–10442 132.0 132.0 
69 2 83–84 2 10822.0 10819–10825 129.5 129–130 
70 3 70–85 16 10653.7 10603–10679 135.7 125–153 
71 2 142–163 22 11749.5 11726–11776 77.5 72–83 
72 5 69–99 31 7611.0 7599–7622 103.4 77–110 
73 2 59–81 23 7943.0 7920–7966 116.5 98–135 
74 3 70–92 23 12291.7 12224–12341 153.7 134–175 
75 2 134–136 3 9903.5 9903–9904 73.5 73–74 
76 2 65–79 15 7636.5 7630–7643 107.5 97–118 
77 2 78–78 1 1651.5 1644–1659 21.0 21.0 
78 3 129–133 5 5477.0 5477.0 41.7 42.0 
*Results shown here describes the general clusters of transmission found by Knox analysis with the critical values set at 100mts as clustering 
distance and 3 weeks as time window. Monte Carlo performed, 10.000. 

 
 
Appendix Table 4. Linear distance between cases within the major spatiotemporal clusters 

Cluster ID No. cases Average distance, m Stddev, m Maximum, m Minimum, m 

Cluster 10 5 77.0 47.2 130.7 16.2 
Cluster 14 4 130.7 27.3 150.4 92.1 
Cluster 15 5 63.6 23.7 85.4 30.0 
Cluster 02 4 38.2 16.4 54.6 21.9 
Cluster 25 9 61.9 26.5 66.4 26.2 
Cluster 27 12 81.6 19.2 216.0 8.0 
Cluster 33 5 78.6 1.1 79.8 77.6 
Cluster 33 4 85.6 26.5 105.0 55.4 
Cluster 57 6 77.8 28.9 124.0 54.1 
Cluster 72 5 56.7 39.1 93.7 10.3 
Average 6 75.2 25.6 110.6 39.2 
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Appendix Figure 1. Logistic fitted model for reported chikungunya cases during the epidemic of 2014 in 

Carabobo State, Venezuela. Chikungunya cases are depicted by open black dots, red line depicts the 

fitted curve (logistic model). 

 

 

Appendix Figure 2. Reproduction number of chikungunya fever in Carabobo State, Venezuela, during 

2014. Blue bars show the epidemic curve; the cases are shown in a weekly interval. Solid black line 

corresponds to the estimated Rt for the epidemic, dashed red line depicts the 95% CI, whereas green 

dashed line depicts the threshold Rt = 1. 
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Appendix Figure 3. Spatial prediction map for the ordinary kriging interpolation of number of days 

elapsed between the appearance of a case in a specific locality and the IC obtained using the Gaussian 

(A), spherical (B), and exponential (C) models. Surface maps showing the kriging standard errors for each 

model in the right side of each map. 
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Appendix Figure 4. Space–time output varying the time window from 1 to 4 weeks. In red, the space-

time clusters. Distance window was set at 100 m. 

 

 

Appendix Figure 5. Relative risk from the Knox test with alternative definitions of spatial and temporal 

proximity. 

 

 



 

Page 16 of 17 

 

Appendix Figure 6. A) Geographic distribution of chikungunya reported cases in Carabobo state, 

Venezuela. a) Red dots denote case location, black dashed lines (b, c, d) are the different panels division 

(arbitrary) within Carabobo state selected to show in detail (zoom in) the general clusters of transmission. 

B) Geographic distribution and significant space–time clustering of chikungunya reported cases. Zoom in 

of the different cluster of transmission detected (including the IC), red dots denote case location, black 

circles identify a significant space–time cluster and yellow lines shows the interaction between cases 

(time–space link). The analysis was performed using 100 m as clustering distance and 3 weeks as time 

window. Significance level for local clustering detection was of 0.05. C) Geographical distribution and 

significant space-time clustering of chikungunya reported cases. Zoom in of the different cluster of 

transmission detected (including IC and AC), red dots denote case location, black circles identify a 

significant space-time cluster and yellow lines shows the interaction between cases (time-space link). The 

analysis was performed using 100 m as clustering distance and 3 weeks as time window. Significance 

level for local clustering detection was of 0.05. D) Geographic distribution and significant space–time 

clustering of chikungunya reported cases. Zoom in of the different cluster of transmission detected 

(including IC and AC), red dots denote case location, black circles identify a significant space–time cluster 

and yellow lines shows the interaction between cases (time–space link). The analysis was performed 

using 100 m as clustering distance and 3 weeks as time window. Significance level for local clustering 

detection was of 0.05. 
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Appendix Figure 7. Significant values of the exploratory IKT analysis. In red the significant (p value 

<0.05) of space–time interactions within the specific space–time intervals. 

 

Appendix Figure 8. Values of relative risk for the exploratory IKT analysis. The colors in the heatmap 

depict the range of values of RR (refer to the legend) within the specific space–time intervals. 


